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Summary

President Bush has proposed that the United States undertake an ambitious mission of

manned and robotic exploration of the solar system (Space Exploration Initiative, SEI), which

will include an eventual manned mission to Mars. In addition to this mission, NASA has many

other high technology programs planned such as the Space Station "Freedom," Mission to Planet

Earth (a series of Earth observing satellites), space telescopes, planetary orbiters, etc. These

missions will all require advanced mechanical moving components which will require wear

protection and lubrication. The tribology practices used in space today are primarily based upon

a technology base that is more than twenty years old. The question is: is this technology base

good enough to meet the needs of these future long-duration NASA missions? This paper will

discuss NASA's future space missions and some of the mechanism and tribology challenges that

will be encountered. Potential solutions to these challenges using coatings technology will be

explored.



1.Introduction

Thespaceage has brought with it many lubrication challenges that had not been

experienced in the past. The challenges included: exposure to very low ambient pressures, a

radiation and atomic oxygen environment, the presence of meteoroids, the absence of a

gravitational field, imposed weight limitation restrictions, low contamination by vapors, and the

use of mechanical components that are not maintainable.

The challenges for the future appear to be even greater because on July 20, 1989, President

Bush made the following statements: "In 1961, it took a crisis, the space race, to speed things

up. Today, we do not have a crisis, we have an opportunity. To seize this opportunity, I am

not proposing a 10-year plan like Apollo, I am proposing a long-range, continuing commitment.

First, for the coming decade, the space station, Freedom; for the new century, back to the moon,

back to the future. And this time, back to stay. And then, a journey into tomorrow, to another

planet, a manned mission to Mars." This new mission has been designated by NASA the Space

Exploration Initiative (SEI).

In addition to the previously mentioned items, the following new challenges for mechanical

components and lubricating systems appear evident: systems which must be capable of up to

30 year operation on the space station or on planetary surfaces; systems which must be capable

of operating over a temperature range of (-170°C to -t-Ill°C), in a vacuum of 10-12, Torr and

under extremely dusty conditions on the moon; and systems which must be capable operating

under wide temperature ranges, in a low oxygen atmosphere and in a dusty, corrosive

environment on the planet Mars.

The purpose of this paper is to review the state-of-the-art of tribology as it applies to space,

to discuss the lubrication techniques that have been used in the past and to present their

advantages and disadvantages, to examine what future NASA space missions are being
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consideredandwhat their tribological challenges might be, and to present some potential new

technologies that may be employed to answer these challenges.

2. Future NASA space missions

In addition to the Space Exploration Initiative (SEI) mentioned in the introduction, NASA

has three other major mission areas. One mission is the Mission to Planet Earth, whose purpose

is to understand the interaction between the oceans, the atmosphere and the solid Earth

(weather); between living organisms and the environment; and between the environment and

pollution. Another is the Astrophysics mission whose purpose is to understand the universe, and

the last is a mission to develop and understand new processes in material and life sciences in

space. Figure 1 shows a proposed time frame for completion of some of the hardware that will be

needed to complete these missions. The figure separates the hardware classes into

transportation, spacecraft, and large space systems.

3. Systems requiring lubrication

To determine if the current state-of-the-art of space mechanisms and tribology technology

were adequate to meet the requirements of future NASA missions, a questionnaire was sent to

industry and government personnel known to be working in the field. Unedited responses to the

questionnaire are reported in Ref. 1. An analysis of the responses are reported in Ref. 2. The

responders answered a number of questions including what are some current or anticipated needs.

Essentially, 98 percent of those who responded to the questionnaire stated that new or improved

mechanical component and tribology technology will be needed for future space missions.

4. Methods used to lubricate space systems

4.1. Liquids

There are many different liquid lubricants that have been used in space. The list includes:

silicones, mineral oils, perfluoropolyMkylethers, polyalphaolifins, polyolesters, multiply-alkylated

cyclopentanes, etc. For more details on these lubricants see Refs. 3 to 6.



Since excessive weight is a problem for satellites, large reservoirs of liquid lubricant and the

resultant pumping systems (as used in aeronautical applications) are not appropriate. Instead,

rolling element bearings are lubricated with small liquid reservoirs and/or porous cages. For a

few applications, positive feed systems have been developed to meter and control the flow of

lubricant to the contact areas to insure adequate lubricant supply [7]. Wick lubrication has also

been proposed as a means of increasing the supply of lubricant [8].

4.2. Greases

A grease is a semi-solid liquid that consists of a liquid lubricant mixed with a thickener.

Greases are used for a variety of space applications. These include: slow to high speed angular

contact ball bearings, journal bearings, and gears. The primary reason for using a grease is that

the grease can act as a reservoir for supplying oil to contacting surfaces. It can also act as a

physical barrier to prevent oil loss by creep or by centrifugal forces. Descriptions of greases used

for various space applications are given in Ref. 3.

4.3. Solids

Solid lubricants are used in space to lubricate various mechanical components such as:

rolling element bearings, journal bearings, gears, bushings, electrical sliding contacts, clamps//

latches, bolts, seals, rotating nuts, robotic and telescoping joints, gas and magnetic bearings,

fluid transfer joints, various release mechanisms, valves, harmonic drives, etc. The types of solid

lubricants used for these space applications are listed in Table I.

The most common way to utilize a solid lubricant is to apply it to a metal surface as a film

or coating. There are many methods of depositing solid lubricant films onto a surface. The

easiest method is to rub or burnish powders onto a roughened metallic surface. The next

simplest method is incorporate solid lubricant powders into a liquid binder system and then

brush, dip or spray the mixture (much like a paint) onto the surface. More modern techniques

4



includevacuum deposition methods such as sputtering and ion plating. For more details on

application techniques see Ref. 9.

Solid lubricants can also be employed as solid bodies. Usually this is done by making a

composite. A composite consists of a matrix material (to provide structural strength) and a solid

lubricant material (to provide lubrication). Some polymer materials such as the polyimides have

demonstrated that they can provide very low friction and wear properties by themselves without

being made into a composite [10].

5. Comparison of liquid versus solid lubricating mechanisms

5.1 Liquid lubrication mechanisms

There are four defined regimes of liquid lubrication, hydrodynamic, elastohydrodynamic,

boundary, and mixed. These regimes are directly proportional to the oil viscosity (Z) and to the

relative velocity (V) and inversely proportional to the load (L). Figure 2, known as the

Stribeck-Hersey curve [11], depicts these regimes in terms of friction coefficient versus the

parameter of viscosity, velocity, and load (ZV/L).

As the thickness of the oil film decreases to values below 2.5x10 "8 m(10 "7 in.), the boundary

lubrication regime comes into play. In this regime, asperity contact between the sliding surfaces

takes place and the lubrication process becomes the shear of chemical compounds on the surface.

This regime is dependent upon lubricant additives within the oil that produce compounds on the

surface that have the ability to shear and provide lubrication. Boundary lubrication is highly

complex, involving surface topography, physical and chemical adsorption, corrosion, catalysis,

and reaction kinetics. This region of lubrication resembles thin film solid lubrication. For more

information on the theory of lubrication and types of additives needed in oils see Ref. 12.

5.2 Solid lubrication mechanisms

When using solid lubricant films or coatings, there are two basic lubricating mechanisms

that come into play [13]. One should be aware of which mechanism is operating before choosing



a particular lubricant. The first mechanism is illustrated in Fig. 3. The mechanism involves the

shear of a very thin film of solid lubricant (usually less than 2 #m thick) at the surface of the

substrate. If the original film is thicker than this, it will either plastically deform or brittlely

fracture. Sometimes a "secondary film" can form from wear debris and/or material that has

been left behind in the surface topography of the wear track; but the likelihood is, if the film is

too thick or the geometry is not correct, the secondary film may not form at all or a secondary

film will form that has a very short life. Thus it is important not to apply the film too thick.

When this mechanism is in operation, applying the film to a rough surface tends to produce

longer endurance lives because a better bond is achieved and the roughness provides a reservoir

for solid lubricant material which restricts it from flowing from the contact area. Reference 14

compares the endurance lives obtained for MoS 2 films applied to polished, sanded and

sandblasted surfaces. The sanded surface provided up to 20 times and the sandblasted surface

provided up to 400 times the endurance life of the polished surface.

In the second mechanism, the film itself is capable of supporting the load and the wear

process is one of gradual wear through the film. Figure 4 shows idealized cross-sectional

schematics of a counterface sliding against a solid lubricant coating. The counterface in the

schematic is sliding out of the page. The schematic illustrates that the coating has enough

structural strength to support this particular load and that a thin, ordered layer has developed

on the surface of the coating. In addition, a thin, ordered transfer film has developed on the

counterface. Thus, the wear process is similar to the way a lubricating composite would wear.

Studies have shown that the rate of film wear when this mechanism takes place is determined by

the load and by the area of contact of the metallic slider [15].

In addition to the different wear mechanisms, there are also many factors or conditions that

affect solid lubricant performance. One can not specify a wear rate or a friction coefficient

without knowing all the operating conditions. The type of factors that affect solid lubricant
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performanceareasfollows:the typeof substrate material and its surface finish, the type of

counterface material and its surface topography, surface hardness of the substrate and

counterface materials, the geometry of the sliding specimens, the contact stress, the temperature,

the sliding speed, and the environment (atmosphere, fluids, dirt, etc.). Depending on the

particular solid lubricant employed, changing the value of just one of these parameters can

change the value of friction coefficient, wear rate, or endurance life. Also, a point to remember is

that low friction does not necessarily correlate to low wear or long endurance lives. For a more

detailed discussion of how these factors affect solid lubricant performance see Ref. 9.

6. Advantages/disadvantages of solid and liquid lubricants

Some of the various difficulties associated with using solid and liquid lubricants have been

discussed in previous sections of this paper. Table II summarizes the relative merits of using

liquid and solid lubricants for space applications.

7. Future space tribological challenges

7.1 Spacecraft

Kannel and Dufrane [16] conducted a study on the tribological problems which have

occurred in the past and which are projected to occur for future space missions. Figure 5 [16]

gives a qualitative chart which illustrates that despite significant advances in tribology, the

demands on tribology for future space missions will grow faster than the solutions.

One problem that has occurred is loss of lubricant through vaporization, creep, degradation,

etc. In an attempt to reduce vaporization (and also contamination), new synthetic lubricants

such as the perfluorpolyalkylethers (PFPE) lubricants have been employed which have very low

evaporation rates [5]. While in theory, these liquids appear to be exceptional lubricants, in

operation some failures have occurred due to chemical breakdown. Researchers have shown that

the presence of chemically active surfaces and/or wear particles combined with exposed radicals

in the fluid will inevitably result in acidic breakdown of the lubricants [17-18]. Another problem



with theselubricantsis that traditional mineraloil additivesarenot solublein them.

Unfortunatelyvery fewmaterialsaresoluble in them.

Solid lubricant films have finite lives. As a general rule, they are not employed where they

will experience more than 1 million sliding cycles. An additional problem with some films is that

powdery wear particles are produced which can pose a contamination problem to sensitive

services.

An alternate method of employing solids is to make a bearing cage out of a composite

lubricant material and have the lubricant be transferred to the rolling balls and then to the inner

and outer races [19]. Figure 6 shows a sketch of how this transfer film mechanism operates.

Generally this form of lubrication is only successful under lightly loaded conditions. However,

the technique is now being used to lubricate the ball bearings in the Space Shuttle turbopumps.

This technique appears to work with some success in the liquid hydrogen pumps, but has not

performed very well in the liquid oxygen pumps. NASA is currently investigating this problem.

Atomic oxygen is the major constituent in a low Earth orbit environment. NASA has just

recently recognized it as being an important consideration in the design of long-lived spacecraft

[20]. Experiments on two space shuttle missions (STS 5 & 6) as well as the Long Duration

Exposure Facility (LDEF) have shown that changes to material surfaces can occur when exposed

to atomic oxygen. Carbon, and silver have been found to react quickly enough to produce

macroscopic changes in their structures. Carbon reacts to form volatile oxides. Silver forms

heavy oxide layers which eventually flake or spall resulting in material loss. Polymers such as

epoxies, polyurethanes, and polyimides also have been found to be reactive with atomic oxygen.

Some representative reaction efficiencies are shown in Table III. Preliminary indications are that

atomic oxygen also degrades molybdenum disulfide.
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7.2Planetary Surface Vehicles and Lunar Processing Plants

It is anticipated, that when a manned outpost is established on the moon, the high vacuum

(lff 12 Tort) combined with a very fine abrasive dust will have a very deleterious effect on sliding

components, especially if they are unlubricated. The dust will accelerate the removal of

protective oxide films on metals. This could especially be a problem with "track-type _ vehicles.

In addition to being abrasive, the dust is also positively charged; thus it will have a tendency to

stick to everything. Lubricants, both liquid and solid will have to be sealed so that the dust can

not invade them.

Another anticipated problem on the moon is wide temperature extremes. In the daytime the

temperature can get to +111 °C while at night it can get down to -181 °C, as was found during

the Apollo missions [21]. And since the moon's rotation rate is low, days and nights on the

moon are 14 Earth days long. By contrast to the lunar temperatures, recorded temperatures

extremes on the surface of the Earth range from -88.3 °C in Antarctica in 1960 and to 58.0 °C

in Libya in 1922 [22]. Currently, there are no liquid lubricants that will operate at these cold

lunar temperatures. Either the lubricants will have to be heated (which will expend precious

energy) or solids employed. In addition there is no protective atmosphere to shield mechanical

equipment and their tribological systems from solar and cosmic radiation.

7.3 Aerospace plane

The aerospace plane will take off from a runway and _fly" into space. Thus, the lubricants

employed will have to operate both in air and in a vacuum. Presumably special lubricants will

be needed. At this point in time, it is not known what the specific temperatures and lubricating

conditions will be. However there is talk of active cooling of the aerodynamic surfaces, which

indicates some lubricant surface areas may be at cryogenic temperatures. To achieve the desired

thrust, some areas will be extremely hot. Thus a very wide range of lubricants may be needed.
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7.4 Space simulationproblems

Sincethe tribologicalpropertiesof materialsare extremelysystems dependent, itis

imperativethat ground-based testingsimulateas closelyas possiblethe particularspace

application.The vacuum, load,speeds,etc.,can be simulatedfairlyeasilyon the ground,

but we can not simulatezerogravity. Also itisvery hard to simulatethe radiation/atomlc

oxygen environment of low Earth orbit(LEO).

Another problem that isdifficultto simulatethough ground-based testingisthe forcesand

vibrationsthat mechanical components experienceduringlaunch. These parameters can cause a

lubricantor component failimmediately or they can decreasethe llfethatwas predictedthrough

ground based testing.

Problems can alsooccur through storageofsatellites.Satellitesare sometimes storedfor

yearsbeforelaunch. Oilstend to creepaway from contactzones,solidlubricantscan oxidizeor

absorb water and decreasetheirlubricatingability,etc.

7.5 Acceleratedtestingproblems

Designerswould liketo know how long a particularmechanical component willoperate

beforeitfails.Presentlythe only way ascertainthisisto operatethe mechanism ina fullscale

ground test. The problem isthatthesetestshave to run foryears. Acceleratedtestingcan be

cloneon some solidslubricants,sincewear rateisoftenspeed independent. When thisisthe

case,the slidingspeed simplycan be increasedto increasethe number ofslidingcycles.

Liquid lubricationisnot speed independent;therefore,speed can not be increasedto

acceleratethe test.There isa need to obtaina betterunderstandingof the failuremechanisms,

so that mechanisms can be analyticallymodeled to simulatea lifetest.Itmay be possibleto

determine failureprecursorson bearingsurfaces(suchas chemical changes or micro-cracks)using

surfacesciencewhich would allow us to predictbearinglifeunder varioustestingconditionsand

to make correctionsforextendingbearinglife.
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8. Potentialnew lubricationtechnologies

8.1 Dense thinfilmsof solidlubricants

SputteredMolybdenum disulfide(MoS2) coatingshave been used as lubricantsformany

years [23].Recent improvements in sputteringtechnologyby programs conducted at the

NationalCentre of Tribologyin the UK [24]and by programs sponsored by the StrategicDefense

Initiative (SDI) [25] have produced very dense, thin films of sputtered MoS 2 which have

exhibited very low friction coefficients (as low as 0.01) and extremely long endurance lives

(millions of revolutions in a space bearing). These films show considerable promise for space

applications where billions of cycles are not required. It may be possible to use this technology

to apply dense, thin films of other solid lubricant materials.

8.2 Powder lubrication

Heshmat [26] has been investigating the use of fine powders to lubricate rolling element and

sliding bearings. His studies have indicated that the powders (under certain conditions) flow

much like liquids in hydrodynamic lubrication. The results are preliminary, but there is some

potential. The use of hard coatings with these powders probably would be beneficial.

8.3 Gas Bearings

An alternativeto using oilor solidsto lubricatea moving component isto use a high

pressuregas filmeitherexternallypressurizedas in a hydrostaticgas bearingor self-actingas in

a hydrodynamic foilbearing. Gas bearingshave been used formany years. One problem with

them isthat at start-upor shutdown the slidingsurfacescome intocontact,so they have to be

hydrostaticallyelevatedor some solidlubricantcoatingmust be appliedto the surfacesto

lubricatetheseintervals[27].Also overloadsand shock loads can cause high speed sliding

contact,which furtherdemonstrates the need fora solidlubricantcoating.
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8.4 Magnetic Bearings

Magnetic bearings essentially use opposing magnetic fields to separate the sliding surfaces.

Usually a combination of permanent and electromagnetic materials are used. Magnetic bearings

are not widely used today, but they have considerable promise for future lubricating systems

however. One of the problems that has inhibited their use has been the complicated and heavy

electronic systems that had to be used to insure their success. With the development of

improved electronics in recent years their future use appears very promising. Solid lubricant

coatings are also needed with the use of these bearings as an ancillary backup.

8.5. Hard coatings

In general, hard coatings are not considered to be lubricants, but they do prevent wear and

sometimes reduce friction. To date, not many anon-lubricating" coatings have been used in

space applications. Miyoshi [28-29] has shown that these materials have considerable promise for

use i_nspace systems. They could be used in conjunction with layer lattice solid lubricants to

help increase endurance lives. In addition, they might be used with liquids to improve friction

and wear during boundary lubrication. There are many other potential applications.

8.6. In Situ Sputtering of Solid Lubricants

While it has not been attempted yet; this author suggests that since many space

applications occur in a vacuum, it may be possible to develop sputtering system that could

sputter a solid lubricant material onto a surface while it is in operation. This would be one way

of resupplying solid lubricant films and essentially providing infinite endurance life.

9. Concluding Remarks

As far as tribological technology development is concerned, some incremental improvements

in the technology have occurred over the last 20 to 30 years. We have a better understanding of

elastohydrodynamic lubrication, some new lubricating and wear theories have been developed,

and some new liquid and solid lubricants have been formulated. However, the big problems of

12
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being able to lubricate reliably for long periods of time in space, at high temperatures or at

cryogenic temperatures have not been solved.

Specifically concerning space tribology, very little new technology has been developed since

the Apollo years. The same technology is still being used today, twenty years later. The

technology has worked adequately for most NASA missions that have flown to date; but as

NASA and the DOD plan longer duration, more demanding missions, the technology will not be

sufficient.
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TABLE I.--Types of solid lubricants

used in space.

• Soft metal films

- Gold

- Silver

- Lead

- Indium

- Barium

• Lamellar solids

- Molybdenum disulfide

- Tungsten disulfide
- Cadmium iodide

- Lea,t iodide

- Molybdenum diselenide

- Intercalated graphite

- Fluorinated graphite

- Ptalocyanines

• Polymers
- PTFE

- Polyimides
- FEP

- UHMWPE

- Peek

- Polyacetal

- Phenolic and epoxy resins
• Other low shear strength materials

- Fluorides of Ca, Li, Ba, rare earths

- Sulfides of Bi, Cd

- Oxides of Pb, Cd, Co, Zn
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TABLE II.--Relative merits of solid and liquid space lubricants.

Solid lubricants Liquid lubricants

• Negative vapor pressure

{no contamination)

• Wide operating temperatures with

no creep or vapor loss

• No migration of lubricants

• No viscosity effects

• Minimal degradation

• Good boundary lubricant that

provides electrical conductivity

• Accelerated testing has some validity

• Good long term storage

• Poor thermal characteristics

- No heat dissipation

• Lubrication dependent on operating

conditions, e.g.:

- Atmosphere (air, vacuum, etc.)

- Load_ contact geometry_ etc.

• Finite life

• Difficult or impossible to re-apply

• Heavy transfer can produce erratic

torque at slow speeds

• Some wear takes place

- Opening up clearances

- Producing wear debris

• Finite vapor pressure

(oil loss and contamination)

• Lubrication temperature dependent

(viscosity, creep, vapor pressure}

• Seals or barrier coatings needed

to prevent creep

• Friction speed and temperature

dependent {viscosity effects}

• Endurance life dependent on

lubricant degradation/loss

• Electrically insulating

• Accelerated testing difficult if

not impossible

• Lon s term storase difficult

• Liquid promotes thermal
conductance between surfaces

• Lubrication relatively
insensitive to air or vacuum

• Long life if properly used

• Easy to reapply

• Low mechanical noise in most

lubrication regimes

• No wear in hydrodynamic or

elastohydrodynamic regime
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TABLE III.--Reaction efficiencies of selected

Tribo-materials with atomic oxygen in low

Earth orbit [17].

Material Reaction

efficiency

(x10"24cm3/atom)

• Kapton 3.0

• Mylar 3.4

• Tedlar 3.2

• Polyethylene 3.7

• Polysulfone 2.4

• 1034C graphite/epoxy 2.1

2.6• 5208/T300
graphite/epoxy

• Epoxy 1.7

• Silicones 1.7

• PTFE <0.05

• Carbon (various forms) 0.9 to 1.7

• Silver Heavily attacked
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